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Abstract
We examine here a range of concerns relating to computer systems and net-
works, with particular attention to difficulties in system development, and the
resulting vulnerabilities, threats, and risks. We examine some approaches that
might achieve dramatic improvements in the ability to develop, operate, and use
trustworthy systems. The problems and their solutions typically require a com-
bination of technology and social policy.
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1. A Total-System Perspective

Each of the following items presents pressing challenges relating to the construc-
tive use of information technology. The totality of all the interrelated challenges
requires concerted efforts that transcend the individual problems.

• Trustworthiness. Trustworthiness implies simply that something is worthy of be-
ing trusted to satisfy its expected requirements. Users often trust systems that are not
worthy of being trusted, with respect to attributes such as system and network secu-
rity, system reliability and survivability, human safety, interoperability, predictable
system behavior, and other important attributes that are for the most part not re-
ceiving enough concerted attention. Computer-communication infrastructures are
typically riddled with flaws. In the absence of more serious attacks, governments
and system developers seem to have been lulled into a false sense of security. At
present, neither proprietary nor source-available system developers are sufficiently
militant in satisfying critical needs. In mass-market software, the patch mentality
seems to have won out over well-designed and well-implemented systems.

• Total system life-cycle issues. Developing and operating trustworthy systems is
inherently difficult today. Typically, a system is not likely to be trustworthy unless the
relevant attributes were explicitly recognized from the beginning of system develop-
ment, reflected in sound system architectures and software development, explicitly
addressed in system procurements, and their fulfillment mandated throughout system
operation.

• System development practice. Costly failures have occurred in developing large
systems, such as the modernization efforts for the US Internal Revenue Service,
US and UK air traffic control systems, the FBI Virtual Case File, and German
TollCollect, to name just a few. Procurement and development of large-scale hard-
ware/software systems remains a high-risk activity, with cost overruns, delays, and
even abandonment of entire projects.

• The Internet. Increasingly, many enterprises are heavily dependent on the Inter-
net, despite its existing limitations. Internet governance, control, and coordination
create many contentious international problems. The Internet infrastructure itself is
susceptible to denial-of-service attacks and compromise, while the lack of security
and dependability of most attached systems also creates problems (e.g., penetrations
such as open relays being used to host zombies and “bots”). Worms, viruses, and
other malware are often impediments, as are ubiquitous problems of spam e-mail
and phishing attacks that may result in identity theft.

• Critical national infrastructures. Despite some past recognition of the perva-
siveness of serious vulnerabilities, critical national infrastructures such as electrical
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power, energy, telecommunications, transportation, finance, and government conti-
nuity are typically still vulnerable to attacks and accidental collapses. For example,
massive power outages keep recurring, despite supposed improvements. Telecom-
munications outages can have severe consequences, as can transportation shutdowns
and fuel shortages. Furthermore, these infrastructures have interdependencies that
result in widespread system failures.

• Accountability. Oversight of computer activities is often as weak as oversight of
corporate practices. On the other hand, audit mechanisms must also respect privacy
needs. As one example that fails on both counts, today’s unauditable all-electronic
voting systems are lacking in accountability in a would-be effort to protect voter
privacy. In fact, without the addition of some sort of voter-verified audit trail, they
provide no meaningful assurances that votes are correctly recorded and processed.
(For example, see the October 2004 special issue of the Communications of the ACM,
devoted to the integrity of election systems.)

• Privacy. Privacy is something that many people do not value until after they
have lost it. Personal privacy is relevant pervasively in our lives, especially in finan-
cial matters and health care. Some advocates of homeland security have postulated
the need to sacrifice privacy in order to attain security, although the necessity of this
tradeoff is highly debatable. Sacrificing privacy does not necessarily result in greater
security. (Benjamin Franklin’s quote is apt in this regard: “Those who would sac-
rifice liberty for security deserve neither.”) Furthermore, serious inroads to privacy
protection have occurred that may be difficult to reverse. Surveillance is becoming
more widespread, but often without adequately respecting privacy. Legitimate needs
for anonymity or at least pseudoanonymity (for example, to protect victims and le-
gitimate whistle-blowers) must not be suppressed or dismissed as dangerous.

• Education. In many countries, university curricula in software engineering and
trustworthiness inadequately reflect the needs of critical systems. Instruction is often
aimed at programming in the small, while more or less ignoring systems in the large.
This situation has potentially serious long-term implications worldwide.

As noted above, it is the totality of these problems that is of primary concern.
Simplistic local approaches are not effective. Greater foresight and pervasive system-
oriented thinking are urgently needed, along with greater private-public cooperation.

2. Anticipating Disasters

As Henry Petroski noted over twenty years ago [42], we generally learn less from
successes than from failures. The ACM Risks Forum [32] and Computer-Related
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Risks [34] include a startling number of failures and risks, and provide a goldmine
of opportunity for anyone who wants to learn from past mistakes. Intriguingly, or
perhaps ironically, most of the content of [34] is still as relevant today as it was in
1995. The same types of failures continue to recur, and the range of causes remains
much the same. Indeed, the scope and extent of the risks has increased steadily. For
example, the ACM Risks Forum continues to report computer system development
fiascos and operational failures of aircraft, air-traffic control, defense systems, train
crashes, electrical power, telecommunications, medical health systems, and finan-
cial problems. These difficulties include problems in reliability, system survivability,
security, privacy, and human well-being. Some of these problems have been es-
calating dramatically, such as spam, phishing attacks, identity thefts, and financial
losses.

In recent years, some unusual natural disasters have occurred, such as the 9.0-
magnitude Indonesian earthquake that triggered a tsunami killing more than 200,000
people in 11 countries around the Indian Ocean, the exceptionally heavy 2006 hur-
ricane season in the Caribbean area including the devastating effects of Katrina,
and a major mudslide in La Conchita, California. Although failures of information
technology obviously had no role in triggering these disasters, IT systems could
play significant roles in anticipating, detecting, monitoring, and responding to such
events, minimizing losses of life, injuries, and consequential damages. What have
we learned from such events, especially with respect to the need for proactive con-
tingency plans?

For example, a tsunami detection and early-warning system such as had already
been deployed in the Pacific Ocean could also have been used in the Indian Ocean.
Such a system could have given timely warnings to millions of people, and could
have saved many lives if local authorities had citizen alerts and evacuation plans in
place. Early warnings and preparedness for hurricanes and typhoons are improving as
computer prediction of possible storm paths is becoming more accurate and as many
authorities prepare disaster response plans and train for their deployment. However,
preparedness tends to improve only after disasters have occurred (and then often
only temporarily). In the case of the mudslide in the hills above La Conchita, which
followed an awesome sequence of rainstorms, sensors in the hills were designed to
trigger advance warnings, which evidently were not taken seriously enough. (A simi-
lar slide had occurred in an adjacent area nine years earlier, and insurance companies
had already declined to provide future coverage.)

Several problems arise in connection with developing detection and warning sys-
tems.

• Institutions (especially governments, corporations, and defense departments)
tend to fashion response plans for past situations rather than for potentially dev-
astating future situations. Unless a similar disaster has recently occurred in a sim-
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ilar venue under similar conditions, few people worry about low-probability high-
impact events. A comparable tendency holds for trustworthy computing. A com-
puter networking event not unlike a tsunami occurred in 1988—namely, the Internet
Worm [47,54] that affected about 10% of the 60,000 Internet hosts active at the time.
As a result, an emergency response team (now US-CERT) was formed to help coor-
dinate responses and warn of vulnerabilities. Prior to the year 2000, a large upgrade
effort to avoid the Y2K crisis was generally successful; the situation could have
been much more serious without the intensive remediation efforts. Today, many new
threats such as malware and terrorist attacks could easily disable critical infrastruc-
tures and the Internet. However, because the cybersecurity equivalent of a tsunami
seems extremely unlikely to many people unfamiliar with the nature of the vulnera-
bilities, there is little interest in mounting efforts to increase system trustworthiness
and engage in other preventive measures. The consequences of major meltdowns
could be very dramatic, especially if accompanied by terrorist attacks.

• Institutions tend to optimize short-term costs and ignore long-term conse-
quences. Also, farsighted analyses of what might happen are always subject to poor
assumptions, faulty reasoning, and mandates to reach self-serving conclusions. This
is discussed further in Section 8.

• People generally do not like to make unnecessary preparations, and often resent
taking sensible precautions. Repeated false warnings tend to inure them, with a re-
sulting loss of responsiveness. Even justifiable warnings that are heeded (such as the
Y2K remediation or boarding up for an oncoming hurricane) are often denigrated if
the resulting effects are only relatively minor.

It is clear that much greater attention needs to be devoted to predicting, detecting,
and ameliorating both natural catastrophes and unnatural computer-related misuse,
attacks, disasters, and outages. Efforts are needed to dramatically improve the trust-
worthiness of those systems on which many lives depend, and to make those systems
more tolerant to human misbehavior as well as malfunctions and natural causes.

3. Trustworthiness

Estimates of system trustworthiness ultimately depend on having some sort of
logical basis for confidence that a system will predictably satisfy its critical re-
quirements. Measures of trustworthiness are particularly important for information
security, system integrity and reliability, human safety, fault tolerance, and overall
enterprise survivability in the face of wide ranges of adversities (including malfunc-
tions, deliberate attacks, and natural causes).
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Many lives increasingly depend on critical national infrastructures—all of which
in turn depend in varying degrees on the predictable behavior of computer-
communication resources. Indeed, these infrastructures often depend on the Internet
for information and control and may be vulnerable to attacks from any attached
computer systems.

Unless critical information system resources are sufficiently trustworthy, other
systems are at risk from failures and subversions. Unfortunately, for many of the key
application domains, the existing information infrastructures are lacking in trustwor-
thiness. For example, power grids, air-traffic control, high-integrity electronic voting
systems, the emerging US Department of Defense Secure Global Information Grid,
national infrastructures, and many collaborative and competitive Internet-based ap-
plications all need systems that are more trustworthy than we have today or are likely
to have in the foreseeable future.

Numerous steps are needed to develop trustworthy systems. Consider an analogy
with the planet’s natural environment—expectations for which are somewhat simi-
lar to expectations for trustworthy information systems. For example, pure air and
uncontaminated water are vital, as are the social systems that ensure them.

Although poorly chosen analogies can be misleading, the analogy with the nat-
ural environment is appropriate. Each of the following items is applicable to both
trustworthy information systems and natural environments.

• Their critical importance is generally underappreciated until something goes
fundamentally wrong—after which undoing the damage can be very difficult if
not impossible.

• Problems can result from natural circumstances, equipment failures, human er-
rors, malicious activity, or a combination of these and other factors.

• Dangerous contaminants may emerge and propagate, often unobserved. Some
of these may remain undetected for relatively long periods of time, whereas
others can have immediately obvious consequences.

• Once something has gone recognizably wrong, palliative countermeasures are
typically fruitless—too little, too late.

• Your own well-being may be dramatically impeded, but there is not much you
as an individual can do about aspects that are pervasive—perhaps international
or even global in scope.

• Detection, remediation, and prevention require cooperative social efforts, such
as public health and sanitation activities, as well as technological means includ-
ing increased trustworthiness.

• Up-front preventive measures can result in significant savings and increased
human well-being, ameliorating major problems later on.
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• As discussed further in Section 8, long-term thinking is relatively rare. There
is frequently little governmental or institutional emphasis on proactive preven-
tion of bad consequences. Many of the arguments against far-sighted planning
and remediation are skewed, being based on faulty, narrowly scoped, or short-
sighted reasoning—especially relating to short-term profits rather than long-
term savings and other benefits.

• Commercial considerations tend to trump human well-being, with business
models sometimes considering protection of public welfare to be detrimental
to corporate and enterprise bottom lines.

In some contexts, pure water is becoming more expensive than oil. Fresh air is
already a crucial commodity. Short- and long-term effects of inadequately trustwor-
thy information systems can similarly be costly. Proactive measures are as urgently
needed for system trustworthiness as they are for breathable air, clean water, and en-
vironmental protection. It is difficult to remediate computer-based systems that were
not designed and implemented with trustworthiness in mind. It is also difficult to
remediate serious environmental damage.

Anticipating and responding to compelling long-term needs does not require extra-
ordinary foresight, whether for air, water, reversing global warming, or trustworthy
systems upon which to build infrastructures. Our long-term well-being—perhaps
even our survival—depends on our willingness to consider the future and commit-
ment to taking appropriate actions.

4. Risks in Trusting Untrustworthiness

The Internet provides ample opportunity for proving the age-old truism, “There’s
a sucker born every minute.” Carnival-style swindles and other confidence games
once limited to in-person encounters are now proliferating electronically, world-
wide, at low cost and effort. Blatantly obvious pre-Internet examples are the so-called
Nigerian-style postal scams that requested use of one’s bank account to help move
money; hoping for a proffered generous commission, the suckers are then separated
from their assets. These scams have been updated to today’s e-mail phishing and
e-mail scam attacks that efficiently harvest personal information from vastly more
people, and are considerably more sophisticated—for example, replicating a legiti-
mate website in every respect except for perhaps just one hard-to-detect bogus URL.
Indeed, it is becoming increasingly difficult to distinguish the real from the bogus,
and people continue to be victimized.

Many other kinds of scams, stings, and misrepresentations also exist. Deceptive
unsolicited e-mail (spam) offering bogus goods and services opens up new avenues
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for fraud and identity theft. Online activities are emerging with glaring opportunities
for swindles, manipulations, and assorted malfeasance, such as online auctions (with
irregularities such as nondelivery and secondary criminality), an alarming increase
in highly sophisticated phishing attacks, Internet gambling, and fraudulent websites
(e.g., with deceptive URLs creating the appearance of legitimacy). Any of these and
other situations could result in inordinate risks, such as financial ruin, blackmail,
compromised democracy, or even loss of life. But it is perhaps not surprising that
people fall for such schemes, particularly when the technology superficially appears
genuine.

Today’s unauditable paperless all-electronic voting systems present significant
risks (see Section 9). The risks are even greater for voting over the Internet. With
independent accountability seriously lacking today, e-voting can be likened to using
an off-shore gambling site not subject to any regulation and managed by unknown
and unaccountable agents.

We tend to trust third-party relationships with banks, telephone companies, air-
lines, and other service providers whose employees have in some way earned our
trust, collectively or individually. But what about untrustworthy third parties? Some
computer-based applications rely critically on the putative integrity and noncom-
promisibility of automated trusted third parties, with little if any easily demonstrated
human accountability. Examples include digital-certificate authorities, cryptographic
servers, surveillance facilities, sensitive databases for law enforcement, and credit-
information bureaus. With appealing short-term cost incentives for pervasive use of
outsourcing, the need for demonstrably trustworthy third-party institutions becomes
even more important. However, security, privacy, and accountability are often ig-
nored in efforts to save money.

Is placing trust in offshore enterprises inherently riskier than using domestic ser-
vices? Not necessarily. Corruption and inattention to detail are worldwide problems.
The deciding factor here is the extent to which comprehensive oversight can be main-
tained.

Is domestic legislation enough? Of course not. Any legislation should not be
overly simplistic; for example, it should avoid seeking solely technological fixes or
purely legislative solutions to deeper problems. Besides, serious complexities arise
from the fact that such problems are international in scope and demand international
cooperation.

Is there a role for liability (for flagrant misbehavior or injurious neglect) and dif-
ferential insurance rates—for example, based on how well a purveyor is living up to
what is expected of it? Such measures have significant potential, although they will
be strongly resisted in many quarters.

So, how can we provide some meaningful assurance that critical entities such as
direct or third parties are sufficiently trustworthy? Ideally, institutions providing,
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controlling, managing, and monitoring potentially riskful operations should be de-
coupled from other operations, avoid conflicts of interest, and be subject to rigorous
independent oversight. Enronitis and collusion must be avoided, even if it means
that the costs are greater. Furthermore, the people involved need altruism, sufficient
foresight to anticipate the risks, and a commitment to effectively combat those risks.
At the very least, their backgrounds should be free of criminal convictions and other
activities that would cast serious suspicions on their trustworthiness. In addition, leg-
islators need to be able to see beyond the simplistic and palliative, to approaches that
address the real problems. Above all, the entire populace must become more aware
of the risks and the concerns outlined above, especially to the inherent combination
of technology and policy issues.

This conclusion should not be a surprise. Overall, there are many risks that must
be addressed. The old Latin expression “Caveat emptor” (Let the buyer beware) is
even more timely today.

5. Principles for Developing Trustworthy Systems

Everything should be made as simple as possible—but no simpler.
Albert Einstein

Developing trustworthy systems with complex requirements is inherently a com-
plex challenge. In general, simple solutions are hopelessly inadequate in such
cases. On the other hand, enormously complex systems—even if they purport to
be trustworthy—are likely to be unmanageable, from the perspective of developers,
system administrators, application operators, and end-users.

Ideally, there should be some middle ground. In particular, the recommended ap-
proach, considered in Section 6, is to develop trustworthy systems as conceptually
sound predictable compositions of simpler components, perhaps even with provably
sound combinations of provably sound components.

In anticipation of that approach, a relevant set of principles can be helpful in in-
creasing trustworthiness—if the principles are used intelligently as guidelines for
system development and operation.

5.1 Saltzer–Schroeder Security Principles
The ten basic security principles formulated by Jerry Saltzer and Mike Schroeder

[51] in 1975 are all still relevant today, in a wide range of circumstances. They are
actually of broader interest than just with respect to security. For example, each one
is also relevant to reliability, survivability, and human safety. In essence, these prin-
ciples are summarized as follows (overly tersely), for present purposes:
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• Economy of mechanism: Seek design simplicity (wherever and to whatever ex-
tent it is effective).

• Fail-safe defaults: Deny accesses unless explicitly authorized (rather than per-
mitting accesses unless explicitly denied).

• Complete mediation: Check every access, without exception.

• Open design: Do not assume that design secrecy will enhance security.

• Separation of privileges: Use separate privileges or even multiparty authoriza-
tion (e.g., two keys held by different entities) to reduce misplaced trust.

• Least privilege: Allocate minimal (separate) privileges according to need-to-
know, need-to-modify, need-to-delete, need-to-use, and so on. The existence of
powerful mechanisms such as superuser is inherently dangerous.

• Least common mechanism: Minimize the amount of mechanism common to
more than one user and depended on by all users.

• Psychological acceptability: Strive for ease of use and operation—for example,
with easily understandable and forgiving interfaces.

• Work factors: Make cost-to-protect commensurate with threats and expected
risks.

• Recording of compromises: Provide nonbypassable tamper-resistant and tamper-
evident audit trails of evidence.

These are of course basic guidelines, not hard-and-fast rules—especially in light
of some potential mutual contradictions. Two fundamental caveats must be recog-
nized. First, each principle by itself may be useful in some cases and not in others.
Second, when taken in combinations, groups of principles are not necessarily all re-
inforcing; indeed, they may in some cases conflict with one another. Consequently,
development must consider appropriate use of each principle in the context of the
overall effort. Examples of a principle having both positive and negative aspects are
scattered through the following discussion.

The Saltzer–Schroeder principles grew directly out of the MIT/Honeywell/
BellLabs Multics experience (e.g., [40]) begun in 1965 and discussed further later in
this section. Each of these principles has taken on almost mythic proportions among
the security elite, and to some extent buzzword cult status among many fringe par-
ties. Therefore, we do not explain each principle in detail—although considerable
depth of discussion is needed for successful application of each principle. Careful
reading of the Saltzer–Schroeder paper [51] is recommended if it is not already a
part of your library. Matt Bishop’s security books [7,8] are also useful in this regard,
placing the principles in a more general context.

Various caveats are considered in Section 12.
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TABLE I
APPLICABILITY OF SALTZER–SCHROEDER PRINCIPLES

Principle Trustworthiness Assurance

Economy of
mechanism

is a vital aid to sound design.
Exceptions must be handled
completely.

can simplify local analysis.

Fail-safe defaults simplifies design, use, operation,
maintenance.

can simplify analysis.

Complete
mediation

is vital, but beware of compromise
from below.

can simplify analysis locally.

Open design Secret designs do not preclude
compromise. Open design can inspire
stronger system security.

Open designs do not preclude
compromise. Open design encourages
independent analysis.

Separation of
privileges

avoids many types of common flaws. focuses analysis more precisely.

Least privilege limits effects of flaws; simplifies
operation.

focuses analysis more precisely.

Least common
mechanism

avoids certain common flaws. modularizes analysis.

Psychological
acceptability

is relevant to usability and operations. Ease of use is helpful, must anticipate
crises.

Work factors are misleading if systems can be
compromised from
outside/within/below.

give a false sense of security if
unexpected compromises are ignored.

Compromise
recording

is an after-the-fact diagnostic and
deterrent.

is only an indirect contributor.

Table I summarizes how each of the Saltzer–Schroeder principles can contribute
to the goals of trustworthiness and assurance, particularly with respect to security,
reliability, and other survivability-relevant requirements. Intriguingly, most of these
principles can also be helpful in enhancing composability.

In particular, complete mediation, separation of privileges, and allocation of least
privilege are beneficial to composability and trustworthiness. Open design can con-
tribute significantly to composability, when subjected to internal review and external
criticism. (See Section 6.) However, conflicts persist about the importance of open
design with respect to trustworthiness, with some people still clinging tenaciously to
the notion that security by obscurity is sensible—despite risks of many flaws being so
obvious as to be easily detected externally, even without reverse engineering. Indeed,
the recent emergence of good decompilers for C and Java, along with the likelihood
of similar reverse engineering tools for other languages, suggests that such attacks
are becoming steadily more practical. Overall, the pretense of keeping a design se-
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cret and the supposed unavailability of source code are realistically not significant
deterrents, especially with ever-increasing skills among black-box system analysts.
However, there are cases in which reliance on security by obscurity is unavoidable—
as in the hiding of private and secret cryptographic keys, although the cryptographic
algorithms and implementations can be public.

Fundamental to trustworthiness is the extent to which systems and networks can
avoid being compromised by malicious or accidental human behavior and by events
such as hardware malfunctions and so-called acts of God. In [35], we consider com-
promise from outside, compromise from within, and compromise from below, with
fairly intuitive meanings. These notions appear throughout this report.

In theory, there are various cases where certain weak links can be avoided (such
as zero-knowledge protocols that can establish a shared key without any part of
the protocol requiring secrecy, Byzantine algorithms, and k-out-of-n cryptography),
although in practice they may be undermined by compromises from below (involv-
ing trusted and supposedly trustworthy insiders subverting the underlying operating
systems) or from outside (involving penetrations of the operating systems and mas-
querading as legitimate users).

From its beginning, the Multics development was strongly motivated by a set of
principles—some of which were originally stated by Ted Glaser and Neumann in the
first section of the first edition of the Multics Programmers’ Manual in 1965. (See
http://multicians.org.) It was also driven by extremely disciplined development. For
example, no coding effort was begun until a written specification had been approved
by the Multics advisory board; also, with just a few exceptions such as low-level
device drivers, all the code was written in a subset of PL/I just sufficient for the
needs of Multics, for which the first compiler (early PL, or EPL) had been developed
by Doug McIlroy and Bob Morris.

In addition to the Saltzer–Schroeder principles, further insights on principles and
discipline relating to Multics can be found in a paper by Fernando Corbató, Jerry
Saltzer, and Charlie Clingen [12] and in Corbató’s Turing lecture [11].

5.2 Further Principles
An earlier view of principled system development was given by Neumann in

1969 [33], relating to what is often dismissed as merely “motherhood”—but which
in reality is both profound and difficult to observe in practice. The principles under
consideration in that paper included automatedness, availability, convenience, de-
buggability, documentedness, efficiency, evolvability, flexibility, forgivingness, gen-
erality, maintainability, modularity, monitorability, portability, reliability, simplicity,
and uniformity. Some of those attributes indirectly affect security and trustworthi-
ness, whereas others affect the acceptability, utility, and long-term future of systems.
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Considerable discussion in [33] was also devoted to (1) the risks of local optimiza-
tion and the need for a more global awareness of less obvious downstream costs of
development (e.g., writing code for bad—or nonexistent—specifications, and hav-
ing to debug really bad code), operation, and maintenance (see Section 8); and (2)
the benefits of higher-level implementation languages (which prior to Multics were
rarely used for the development of operating systems [11,12]).

In the context of developing predictably trustworthy systems, an expanded set of
principles is listed below. Although most of them might seem more or less obvious
to advanced developers, there are interpretations, hidden issues, and potential pitfalls
for their successful implementation. As a result, a seemingly paradoxical situation
arises: understanding and experience are required in order to make optimal use of
the principles. Thus, the learning experience is essentially iterative.

• Sound architecture. Recognizing that it is better to avoid design errors early
than to attempt to fix them later, composable architectures inherently capable
of evolvable, maintainable, robust implementations are required. Furthermore,
good interface design is as fundamental to good architectures as is their internal
designs. Both the architectural structure and the architectural interfaces (partic-
ularly the visible interfaces, but also some of the internal interfaces that must be
interoperable) can benefit from careful specification.

• Abstraction. The primitives at any given logical or physical layer should be rele-
vant to the functions and properties of the objects at that layer, and should mask
lower-layer detail where possible. Ideally, the specification of a given abstrac-
tion should be in terms of objects meaningful at that layer, rather than requiring
lower-layer (e.g., machine-dependent) concepts. Abstractions at one layer can
be related to the abstractions at other layers in a variety of ways, thus simpli-
fying the abstractions at each layer rather than collapsing different abstractions
into a more complex single layer. Particularly useful examples of abstraction
include trustworthiness kernels, virtual machine monitors, and similar layered
defenses.

• Modularity. Modularity relates to the characteristic of system structures in
which different entities (modules) can be relatively loosely coupled and com-
bined to satisfy overall system requirements, whereby a module could be modi-
fied or replaced as long as the new version satisfies the given interface specifica-
tion. In general, modularity is most effective when the modules reflect specific
abstractions and provide encapsulation within each module (see the next item).

• Encapsulation. Details that are relevant to a particular abstraction should be
local to that abstraction and subsequently isolated within the implementation of
that abstraction and the lower layers on which the implementation depends. One
example of encapsulation involves information hiding—for example, keeping
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internal state information inaccessible to the visible interfaces [41]. Another
example involves masking the idiosyncrasies of physical devices from higher-
layer system interfaces, and from the user interfaces as well.

• Layered and distributed protection. Protection (and generally defensive de-
sign for security, reliability, and so on) should be distributed to where it is
most needed, and should reflect the semantics of the objects being protected.
With respect to the reality of implementations that rely on—and perhaps pass
through—entities of different trustworthiness, layers of protection are vastly
preferable to flat concepts such as single sign-on (i.e., where only a single
authentication is required). With respect to psychological acceptability, single
sign-on has enormous appeal; however, it can leave enormous security vulner-
abilities as a result of compromise from outside, from within, or from below, in
both distributed and layered environments. Overall, psychological acceptability
can conflict with other principles, such as complete mediation, separation of
privileges, and least common privilege.

• Constrained dependency for integrity. Dependencies on less trustworthy entities
should be avoided unless potential negative effects can be somehow confined or
constrained. However, it is possible in some cases to surmount the relative un-
trustworthiness of mechanisms on which certain functionality depends—as in
various types of trustworthiness-enhancing mechanisms (see [36]). In essence,
do not trust anything on which you must depend—unless you are adequately
satisfied with demonstrations of its trustworthiness or the ability to surmount
its relative untrustworthiness. This intuitive extension of Biba’s notion of mul-
tilevel integrity [6] is considered further in Section 6.

• Architectural minimization of what must be trustworthy. Appropriate trustwor-
thiness should be situated where it is most needed, suitable to overall system
requirements, rather than required uniformly across widely distributed compo-
nents (with potentially many weak links) or totally centralized (with creation
of a single weak link and forgetting other vulnerabilities). Trustworthiness is
expensive to implement and to ensure. Thus, significant benefits can result from
minimizing what has to be trustworthy. This principle can contribute notably to
sound architectures. In combination with economy of mechanism, this provides
avoidance of both bloatware and adverse dependence on less trustworthy com-
ponents. For example, in some cases a simple end-to-end check can determine
the presence of intermediate compromises and avoid the necessity of trusting
everything else for integrity (apart from denial-of-service attacks).

• Object orientation. The OO paradigm bundles together abstraction, encapsu-
lation, modularity of state information, inheritance (subclasses inheriting the
attributes of their parent classes—e.g., for functionality and for protection), and
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subtype polymorphism (subtype safety despite the possibility of application to
objects of different types). This paradigm facilitates programming generality
and software reusability, and if properly used can enhance software develop-
ment. This is a contentious topic, in that most of the OO methodologies and
languages are sloppy with respect to inheritance.

• Separation of policy and mechanism. Statements of policy should avoid inclu-
sion of implementation-specific details. Furthermore, mechanisms should be
policy neutral where that can be advantageous in achieving functional general-
ity. However, this principle must never be used in the absence of understanding
about the range of policies that needs to be implemented. There is a tempta-
tion to avoid anticipating meaningful policies, deferring them until later in the
development—and then discovering that the desired policies cannot be realized
with the given mechanisms. This is a characteristic chicken-and-egg problem
with abstraction.

• Separation of duties. In relation to separation of privileges, separate classes
of duties of users and computational entities should be identified, so that dis-
tinct system roles can be assigned accordingly. Distinct duties should be treated
distinctly, as in activities of system administrators, system programmers, and
unprivileged users.

• Separation of roles. Concerning separation of privileges, the roles recognized by
protection mechanisms should correspond in some readily understandable way
to the various duties. For example, a single all-powerful superuser role intrin-
sically violates separation of duties, separation of roles, separation of privilege,
and separation of domains. The separation of would-be superuser functions into
separate roles (as in Trusted Xenix) is a good example of desirable separation.
Once again (as with single sign-on), there is a potential conflict between princi-
ples: the monolithic superuser mechanism provides economy of mechanism, but
violates other principles. In practice, all-powerful mechanisms are sometimes
unavoidable, and sometimes even desirable despite the negative consequences
(particularly if confined to a secure subenvironment). However, they should be
avoided wherever possible.

• Separation of domains. Concerning separation of privileges, domains should
be able to enforce separate roles. For example, a single all-powerful superuser
mechanism is inherently unwise, and is in conflict with the notion of separation
of privileges. However, separation of privileges is difficult to implement if there
is inadequate separation of domains. Separation of domains can help enforce
separation of privilege, but can also provide functional separation (as in the
Multics ring structure, a kernelized operating system with a carefully designed
kernel, a capability-based architecture, or a virtual machine monitor). The prin-
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ciple of least common mechanism is also somewhat related. It is desirable to
avoid sharing of trusted multipurpose mechanisms, including executables and
data, thereby minimizing the use of all-powerful mechanisms such as superuser
and shared buffers (such as the historically seminal FORTRAN common). As
one example of the flaunting of principles, exhaustion of shared resources pro-
vides a huge source of covert storage channels, whereas the natural use of a
common calendar clock provides a source of covert timing channels.

• Sound authentication. Authentication is a pervasive problem. Nonbypassable
authentication should be applicable to users, processes, procedures, and in gen-
eral to any active entity or object. Authentication relates to evidence that the
identity of an entity is genuine, that procedure arguments are legitimate, that
types are properly matched when strong typing is to be invoked, and other sim-
ilar aspects.

• Sound authorization and access control. Authorizations must be correctly and
appropriately allocated, and nonsubvertible. Crude all-or-nothing authorizations
are often riskful (particularly with respect to insider misuse and program-
ming flaws). In applications for which user-group-world authorizations are
inadequate, access-control lists and role-based authorizations may be prefer-
able. Finer-grained access controls may be desirable in some cases, such
as capability-based addressing and field-based database protection. However,
knowing who has access to what at any given time should be relatively easy to
determine.

• Administrative controllability. The facilities by which systems and networks
are administered must be well designed, understandable, well documented, and
sufficiently easy to use without inordinate risks.

• Comprehensive accountability. Well-designed and carefully implemented facil-
ities are essential for comprehensive monitoring, auditing, interpretation, and
automated response (as appropriate). Serious security and privacy issues must
be addressed relating to the overall accountability processes and audit data.

Similar to the summary in Table I the additional principles also tend to contribute
to the goals of achieving composability, trustworthiness, and assurance.

At this point in the analysis, it should be no surprise that these and other principles
can contribute in varying ways to security, reliability, survivability, and other -ilities.
Furthermore, many of the principles and other “ilities” are linked. We cite just a few
of the interdependencies that must be considered.

For example, authorization is of limited use without authentication, whenever
identity is important. Similarly, authentication may be of questionable use with-
out authorization. In some cases, authorization requires fine-grained access controls.
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Least privilege requires some sort of separation of roles, duties, and domains. Sepa-
ration of duties is difficult to achieve if there is no separation of roles. Separation of
roles, duties, and domains each must rely on a supporting architecture.

The comprehensive accountability principle is particularly intricate, as it depends
critically on many other principles being invoked. For example, accountability is in-
herently incomplete without authentication and authorization—without which trace-
back to the users or originating entities is doubtful. In many cases, monitoring may
be in conflict with privacy requirements and other social considerations [16], unless
extremely stringent controls are enforceable. Separation of duties and least privilege
are particularly important here. All accountability procedures are subject to security
attacks, and are typically prone to covert channels as well. Furthermore, the proce-
dures themselves must be carefully monitored. Who monitors the monitors? (Quis
auditiet ipsos audites?)

6. System Composition: Problems and Potentials

The challenge of developing systems with realistic trustworthiness requirements
is inherently complex, despite persistent advice to keep it simple. However, consider
the goal of building trustworthy systems using predictably sound compositions of
well-designed components along with analysis of the properties that are preserved by,
transformed by, or emerging from the compositions. Conceptually, that can greatly
simplify and improve development. Indeed, composition is seemingly theoretically
relatively straightforward to achieve—especially if we follow the guidance of David
Parnas, Edsger Dijkstra, and others. Unfortunately, there is a huge gap between the-
ory and common practice: system compositions at present are typically ad hoc, based
on the intersection of potentially incompatible component properties, and dependent
on untrustworthy components that were not designed for interoperability and whose
behavior can undermine the compositions—often resulting in unexpected results
and risks. In practice, it is particularly difficult to determine all potentially nega-
tive effects of compositions of arbitrary components that were not designed with
composition explicitly in mind.

Composition is a concept that is meaningful with respect to many entities, includ-
ing requirements, specifications, protocols, implemented components, and analytic
results such as evaluations and formal proofs. In many cases, the composition of
different entities may have unpleasant results.

Other problems may arise because of the order in which operations are carried out,
even though the operations may be theoretically commutative or in some broader
sense equivalent (perhaps producing different but nevertheless acceptable results).
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For example, consider the combination of error-correcting coding (which adds redun-
dancy), compression (which removes redundancy), and cryptography (which ideally
makes meaningful content look essentially random). Compressing after encrypting
makes little sense, because there is little apparent redundancy. Similarly, compress-
ing after adding redundancy for error correction also makes little sense, because it
vitiates the overall error correction. Thus, if such a combination were to be effective,
compression should precede encryption, which then should be followed by error-
correcting coding.

With regard to subsystem composition, the following are particular concerns.

• Composability and compositionality. A distinction is sometimes made be-
tween two concepts pertaining to composition. Composability relates to the
predictability of the preservation or transformation of existing properties un-
der composition. Compositionality refers to the predictability of properties that
emerge as a result of compositions.

• Inadequate requirements. If stated requirements do not explicitly demand that
subsystems and other components be developed in ways that encourage com-
patibility and interoperability, composability is likely to be difficult to achieve.
Furthermore, poorly defined requirements are likely to hinder composability.

• Nonexistent or inappropriate specifications. If system and subsystem specifi-
cations do not adequately define the relationships among interfaces, inputs,
internal state information and state transitions, outputs, and exception con-
ditions, and if those specifications are oblivious to critical relationships with
related functionality, determining to what extent composability is possible be-
comes much more difficult. Composition of underconstrained specifications is
an inherent problem, because the extent to which the components compose is ill-
defined; supposed demonstrations of composability may actually be meaning-
less. Overly constrained specifications (e.g., including unnecessarily low-level
and possibly incompatible details) are also often an impediment to compos-
ability. Shared state information across components is a particular source of
potential problems.

• Properties that exist beyond what is defined by stated individual subsystem
interface specifications. Assuming the presence of meaningful specifications,
inadequacies of the specifications and inconsistencies between specifications
and implementations are characteristic problems. In general, specifications are
always inherently incomplete with respect to defining what should not happen,
even if they are fairly good at defining what should happen. (Abstraction is a
very important technique for simplifying specifications, but it suppresses detail
that may include undesirable aspects of behavior and may therefore negatively
affect compositional properties.) In addition, programming languages and com-
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pilers themselves provide very few if any guarantees that something beyond
what is expected cannot occur. Examples include shared-buffer interactions and
unanticipated information residues from one invocation of a subsystem to a sub-
sequent or concurrent invocation of the same subsystem; buffer overflows and
other cases of inadequate bounds checks and inadequate runtime validation;
inadequate authentication; improper initialization and finalization; improper en-
capsulation, which can result in interference and other unexpected interactions;
race conditions; covert channels; and intentionally planted Trojan horses. This
list represents just the nose of the camel. All these problems can impair com-
posability. As one example, various Windows operating systems are actually
relatively modular (which is essential for orderly development), but the mod-
ules are not sufficiently encapsulated to prevent adverse effects resulting from
composition.

• Properties that manifest themselves only as a result of combinations of sub-
systems. Examples include adverse emergent properties (i.e., disruptive or even
constructive effects that are not evident in any of the individual subsystems but
that arise only when the subsystems are combined); adverse feedback interac-
tions between subsystems, such as infinite loops or dependence on functionality
that is less trustworthy; emergent covert channels that do not exist in any of
the subsystems in isolation; mutual incompatibilities in the interfaces—perhaps
resulting from internal state interference; global failure modes resulting from
local faults, as in the 1980 ARPANET collapse [48] and the 1990 AT&T long-
distance collapse (e.g., see [34]); so-called “man-in-the-middle” attacks (which
might alternatively be called untrustworthy interpositions), in which an inter-
poser can simulate the actions of each component; and other failure modes that
arise only in the overall system context. A fascinating noncomposability sit-
uation is noted in attempts to combine encryption with digital signatures [4]:
signatures are composable with public-key cryptography, but not with symmet-
ric cryptography, in which case security may break down. These impediments
to composability can arise essentially everywhere throughout the development
life cycle—for example, incompatibilities among different requirements and
policies, undesirable interactions in specifications and implementations, and
difficulties in reconfiguration and maintenance.

• Multivendor and multiteam incompatibilities. In the interest of having heteroge-
neous architectures that enable mixing and matching of alternative components,
it may be desirable to use multiple system developers. However, incompati-
bilities among interface assumptions, the existence of proprietary internal and
external interfaces, and extreme performance degradations resulting from the
inability to optimize across components can all result in difficulties in compos-
ing components.
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• Scalability. Composability typically creates many issues of scalability. For
example, performance may degrade badly or nonpredictably as multiple sub-
systems are conjoined. Composability can lead to a wide range of expected
performance implications—for example, linear, multiplicative, or exponential
in the number of composed subsystems. In practice, even further degradations
can result—for example, from design or implementation flaws or indirect ef-
fects of the composition, such as unrecognized dependence on substantively
slow interactions. Obviously, infinite loops and standstill deadlocks (“deadly
embraces”) are limiting cases of degradation, and often arise as a result of sub-
system compositions.

• Human issues. Above all, people are the ultimate source of many problems.
The supposed “good guys” can accidentally have profoundly negative effects
on composability, through poor system conception, inadequate requirements,
lack of comprehensive and accurate specifications, bad software-engineering
practice, misuse or bad choices of programming languages, badly managed de-
velopment, and sloppy operational practice (for example). Insider “bad guys”
can have various negative effects on the desired composability, such as installing
Trojan horses during development, operation, and reconfiguration that impair
interoperability and compromise security. Human activities can also directly
impair enterprise interoperability [18]. Outsider “bad guys” are generally less
likely to negatively affect composability externally, except as a result of pen-
etrations (through which they effectively become bad insiders), subversion of
the development process, tampering, and denials of service (often without any
internal access required).

There are many desiderata for achieving predictably assured composition, relating
to requirements, specifications, implementations, programming languages, configu-
ration information, and analyses thereof. Several relevant issues are noted below.

• Compatibility and interoperability. Compatibility implies merely the ability to
coexist within a common framework, whereas interoperability additionally im-
plies the ability to work together without adverse side effects. Both are essential
prerequisites for composability.

• Web interoperability. In recent years, considerable effort has been devoted to-
ward establishing a common definition of a Web portal concept that would
facilitate universal interoperability providing access to Web services. As one
example, Michael Alan Smith [53] has proposed a hierarchical General Portal
Model that attempts to unify seventeen different definitions from the litera-
ture. From the top, the layers address process interfaces (process identification,
transformation), resource discovery (resource identification, resource location,
resource binding), and network interfaces (security, network access). In this
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context, a portal implies an “infrastructure providing secure, customizable, per-
sonalizable, integrated access to dynamic content from a variety of sources, in
a variety of formats, wherever it is needed.” Among other approaches is that of
a service-oriented architecture (e.g., [24]).

• Consistency and completeness of the interface specifications. Externally dis-
cernible functional behavior should be precisely what is specified, implying
bilateral consistency of behavior with respect to the functional specifications.
That is, the subsystem must do what it is supposed to do, and nothing else
beyond what is specified. However, because specifications are inherently in-
complete, many system failures (in security, reliability, performance, and so on)
can result from events that occur outside the scope of specifications and thus are
undetectable by any analyses based on those specifications.

• Independence of specification abstractions. As noted above, abstraction can
be an enormous aid to composability of specifications, as well as to assur-
ance proofs. However, it is essential that the details not explicitly represented
by each abstraction be independent of the details of other abstractions. Oth-
erwise, composability will most likely be impaired. One elegant example of
provable composability is seen in the orthogonality theorem of Chander, Dean,
and Mitchell [9], which provides soundness and completeness proofs for a trust
management kernel with a clean separation between authorization and struc-
tured distributed naming.

• Timing and synchronization issues. In general, Lamport-style safety properties
(i.e., nothing bad happens) compose better than liveness properties (something
good eventually happens with certainty) [25], but this boundary is blurred by
the inclusion of timing constraints, which are technically safety properties, but
generally not composable. It is also blurred by the existence of properties that
are neither safety nor liveness—such as information flow. Furthermore, time
(whether real time or relative time) is typically common to different abstrac-
tions, which is a reason that synchronization and timing constraints can present
serious impediments to facile composition. For example, see Kopetz [23] on
composability in the Time-Triggered Architecture.

• Explicit state visibility and information hiding. If a subsystem is stateless (i.e.,
it does not remember any of its own state information from one invocation to
the next), then it is less likely to have adverse interactions when that subsystem
is composed with other subsystems—although there are always issues such as
noncommutativity of operations and interference during concurrent execution.
In addition, nontrivial recovery, as in selective rollback, may be unnecessary.
However, statelessness is often not a desirable goal—although stack disciplines
effectively separate the internal state information from the subsystem itself and
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simplify composability. Assuming that a subsystem is stateful (i.e., it retains
at least some of its own state information from one incarnation to the next),
there is a choice between the classical notion of information hiding and ex-
plicit external visibility of state information (which tends to make explicit any
residues that might impair compositionality). On the other hand, because in-
formation hiding typically masks internal state information, it can hinder facile
composability if there are any implicitly shared states. However, this should
be detectable with sensible specifications and implementation. (For example,
pointers, loosely bound aliases, and other indirect references tend to create
problems.) Thus, the separation of common stateful entities can greatly facil-
itate composition. Information hiding is also very desirable for other reasons,
including isolation, security, system integrity, and tamper resistance.

One interesting historical approach is found in the formal specifications of
SRI’s Provably Secure Operating System (PSOS [19,38,39]), in which certain
state information is hidden but from which the state information that is explic-
itly visible at the module interface is derived. Because hidden state information
could not be accessed outside of the module (information hiding), it could not
be referenced in any other module specification. As a result, there can be no
module state residues or other state information that can be accessible to other
modules or subsequent invocations of the same module beyond what is explic-
itly declared as visible. This greatly increases the composability of modules
and the analysis of potential interactions. It also rules out certain characteristic
design flaws simply because it is impossible to represent them in the specifi-
cations, even accidentally! (Note that bad implementations can introduce bugs
that are not definable in specifications.)

6.1 Other Manifestations of Composition
As noted at the beginning of this section, composition is not limited only to com-

ponents. It has other manifestations as well.

• Policy composition. Serious problems can result when different policies are
in conflict or otherwise do not compose properly—especially if that lack of
composability is not discovered until much later in development. Furthermore,
attempting to compose policies often results in emergent properties that are not
evident from the constituent policies. For example, see work by Virgil Gligor
et al. with respect to the composability of separation-of-duty policies [21] and
application-specific security policies [20]. Gligor notes (among other things)
that policy composability does not necessarily imply the usefulness of the re-
sulting policies, and that existing compositionality criteria are not always re-
alistic. Preventing denials of service is a particularly thorny policy; besides,
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policies that do not address denials of service are inherently incomplete. Of
considerable interest is work by Heiko Mantel relating to the general compos-
ability of secure system policies and components [28] (e.g., flow properties that
are preserved under refinement [27]). Many past efforts are of particular interest
to the research community, such as [2,29].

• Protocol composition. There is also ongoing work on protocol composability—
for example, see [13]. An interesting research challenge might be to consider
a particular collection of protocols (e.g., for authentication, encryption, and in-
tegrity preservation) and prove that they are mutually composable, subject to
certain constraints; the proofs could also be extended to demonstrating that their
modular implementations would be composable.

• Proof composition. A book on compositionality of proofs [15] is worth care-
ful reading for anyone interested in formal verification and high assurance of
systems.

• Certification composition. Rushby [49] has characterized some of the main is-
sues relating to the modular certification of an aircraft that is derived from
separate certification of its components, based on an extension of a formal ver-
ification approach. The crucial elements involve separation of assumptions and
guarantees (based on “assume-guarantee reasoning”) into normal and abnormal
cases.

6.2 Approaches for Predictable Composition
The following approaches can enhance the likelihood of predictable compositions.

• Dependency analysis. In many systems, unrecognized interdependencies among
different components can hinder composability. Similar comments are relevant
to contradictory or otherwise incompatible interdependencies among policies,
models, separately compiled software, and even proofs. Identifying such de-
pendencies and removing them or otherwise neutralizing them would be a
considerable aid to composability,

• Constrained and guarded dependency strategies. The principle of constrained
dependency for integrity is introduced in Section 5. Deterministic linearization
or other suitable prioritization of intersubsystem dependencies (such as a lat-
tice ordering) can avoid many adverse dependency problems, such as often
result from misguided locking strategies and search strategies, compatibility
mismatches in system upgrades, and unanticipated distributed interactions. For
example, in Dijkstra’s THE system paper [17], the use of a linearly ordered
hierarchical locking structure guaranteed that no deadly embraces could oc-
cur between two different layers of abstraction (although in subsequent years a
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deadly embrace was occasionally discovered within a particular layer). As an-
other example, Biba’s multilevel integrity [6] (MLI) requires in essence that
no computational entity (e.g., user, program, process, or data) may depend
on any other entities that are deemed less trustworthy (i.e., that are poten-
tially less highly trusted) with respect to integrity. In the broadened sense of
dependence considered here, the strict lattice ordering of multilevel integrity
attributes implied by Biba may be relaxed if any relative untrustworthiness can
be masked by creative system architecture or otherwise transcended—as in the
trustworthiness-enhancing mechanisms enumerated in [36] as well as other ar-
chitectural approaches such as isolation kernels and virtual machine monitors.
Also, see Abadi et al. [1] for a formalization of dependency.

• Functional consistency among layers of abstraction. The 1977 Robinson–Levitt
paper [45] on hierarchical formal specifications introduced the concept of for-
mal mappings between different layers of functional specifications that repre-
sent abstract implementations of each layer as a function of the lower layers.
Formal proofs at one layer can be derived by using the mapping functions
together with the formal specifications at appropriate layers. The relatively
unsung Robinson–Levitt mapping analysis is actually quite far-reaching, and
can be used directly to relate properties of a composed system to individ-
ual properties of its subsystems. As noted above with respect to correctness
and completeness of interface specifications, this approach is of course limited
by any incompleteness in the functional specifications and mapping functions.
The Robinson–Levitt approach was part of the SRI Hierarchical Development
Methodology (HDM) [46] used in the Provably Secure Operating System [19,
38,39] project in the 1970s. An extremely impressive new application of this
approach in a modern setting has been developed by John Rushby and Rance
DeLong [50], which uses the interpretation mechanism of SRI’s current formal
methods environment (PVS), and applies it to high-assurance separation ker-
nels (which explicitly provide both isolation and controlled sharing) as well as
virtual-machine architectures. An earlier informal application of explicit inter-
layer relationships is found in the analysis of the interlayer dependencies in the
Honeywell/Secure Computing Corporation (SCC) LOgical Coprocessor Ker-
nel (LOCK) [52]. (PSOS’s type-enforcement was the precursor of several SCC
systems, including the Sidewinder firewall.)

• Operating system and programming language approaches. Program modular-
ity, recursive and nested procedure-call protocols, clean stack disciplines, and
the absence of unintended residues can all greatly enhance composability. Virtu-
alized multiprocessing and rigorously enforced virtual machine separation has
considerable possibilities in enabling extremely efficient distributed process-
ing by abstracting out many of the usual pitfalls, especially when distributed
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across networked systems. There is an important role for sound programming
languages that naturally enforce modular separation with abstraction and en-
capsulation, compilers that efficiently enforce the programming-language mod-
ularity and strong typing, systems that provide efficient interprocedure and in-
terprocess control flow, and optimizing compilers that do not throw out the baby
with the bathwater (e.g., by prematurely binding entities that need to remain
separated until later, creating less easily analyzed object code, seriously imped-
ing debugging, or compromising security separations provided by architectural
encapsulations and programming languages). (However, well-implemented ag-
gressive optimizers are less likely to violate security than programmers are.) As
one example, SPARK (the SPADE Ada Kernel, based on the Southampton Pro-
gram Analysis Development Environment) provides a language-based approach
to improving security and safety. Correctness-preserving transformations that
survive compilation and optimization are another approach with significant
promise. In particular, optimizing compilers must be fairly farsighted not to
compromise the integrity of source code in the context of its system execution,
although careful modularity with abstraction and encapsulation can diminish
some of those possible effects. An alternative approach to assuring the sound-
ness of the optimization is the translation validation approach considered at
NYU [55], in which a validation tool confirms that the object code produced by
the optimizer is a correct translation of the source code.

• Principled designs, implementations, and use. As a summary of this section,
the Saltzer–Schroeder principles and the further principles discussed above are
potentially extremely beneficial to the attainment of security. Techniques par-
ticularly relevant to composability include abstraction, hierarchical layering,
encapsulation, design diversity, composability, pervasive authentication, and ac-
cess control, as well as administrative and operational controllability, pervasive
accountability and recovery, separation of policy and mechanism, assignment
of least privilege, separation of concerns, separation of roles, separation of du-
ties, and separation of domains. The object-oriented paradigm also has some
merit, especially strong typing. (However, the would-be inheritance of imple-
mentations without strict inheritance of specification subclasses tends to impede
composability. Every subclass instance must meet the specifications of all its
superclasses, or else all verifications of uses of the superclasses are unsup-
ported.)

Several recent proceedings are worthy of consideration with regard to composable
system architecture and software engineering [43,22,26,14].
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7. A Crisis in Information System Security

Section 4 considers risks in trusting entities that might not actually be trustworthy.
Nevertheless, flawed systems that can cause more security and reliability problems
than they solve are in widespread use.

Untrustworthy mass-market software might be used so extensively for various rea-
sons, even if the source code is proprietary and the vendor can arbitrarily download
questionable software changes without user intervention. Sometimes this is a path
of least resistance (with few perceived alternatives) or obliviousness. Or perhaps it
has the appearance of saving money in the short term. In some cases it is mandated
organizationally—ostensibly to simplify procurement, administration, and mainte-
nance, or because of a desire to remain within the monolithic mainstream. Often
security, reliability, and the risks of networking are considered less important, or
there is a belief that the free market will provide a cure. But the simplest answer is
probably “because it’s there.” However, irrespective of any reasons why people might
be willing to use flawed software, in certain cases it might be wiser not to use it at
all—especially where the risks are considerable.

In my fourth testimony (August 2001) in five years for committees of the US
House of Representatives, I made the following statement—amplifying similar state-
ments made in earlier years:

“Although there have been advances in the research community on informa-
tion security, trustworthiness, and dependability, the overall situation in practice
appears to continually be getting worse, relative to the increasing threats and
risks—for a variety of reasons. The information infrastructure is still fundamen-
tally riddled with security vulnerabilities, affecting end-user systems, routers,
servers, and communications; new software is typically flawed, and many old
flaws still persist; worse yet, patches for residual flaws often introduce new vul-
nerabilities. There is much greater dependence on the Internet, for Governmental
use as well as private and corporate use. Many more systems are being attached
to the Internet all over the world, with ever increasing numbers of users—some
of whom have decidedly ulterior motives. Because so many systems are so easily
interconnectable, the opportunities for exploiting vulnerabilities and the ubiquity
of the sources of threats are also increased. Furthermore, even supposedly stand-
alone systems are often vulnerable. Consequently, the risks are increasing faster
than the amelioration of those risks.”

In many respects, the situation does not seem to be getting better. The contin-
uing flurry of viruses, worms, and system crashes raises the level of disruption to
users and institutions. The incessant flow of identified vulnerability reports and the
further existence of flaws that are not widely known suggest serious problems. The
continual needs for installing copious patches in mass-market software (and the it-
erative problems they sometimes cause) suggest that we are not converging. Putting
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the blame on inadequate system administration seems fatuous. Various exploitations
of flaws (such as worms and viruses) are further examples of endemic problems in
vulnerable systems that can be exploited. Unfortunately, too many people seem to be
oblivious to the underlying security problems.

Suggestions that we need to raise the bar may be countered with the argument that
past attacks have not really been serious, and we have had few pervasive disasters
of information system security, so why should we worry? Unfortunately, Murphy’s
Law suggests that if it can happen, it eventually will. Also, the general overem-
phasis on short-term costs allows long-term concerns to be ignored. (See the next
section.)

The Free Software/Open Source movements have been touted as possible al-
ternatives to the inflexibilities of closed-source proprietary code. Indeed, GNU-
Linux/BSD Unix variants are gaining considerable credibility, and are seemingly
less susceptible to malware attacks. However, by itself, availability of source code
is not a panacea, and sound software engineering is still essential. Even if an en-
tire system has been subjected to extremely rigorous open evaluation and stringent
operational controls, that may not be enough to ensure adequate behavior.

Many users and application developers have grown accustomed to flaky software,
perhaps because they do not have to meet critical requirements (as in nuclear power
control, power distribution, and flight and air-traffic control) and suffer no liability
for disasters. Perhaps it is time to follow the adage of “Just Say No” to bad software,
and to demand that software development be dramatically improved.

Many different approaches to software system development can be found in
practice, such as object-oriented programming, aspect-oriented programming, agile
software development, service-oriented architecture, design patterns, model-based
design, event-driven architecture, clean-room development, extreme programming,
formal methods, a long list of methodologies named after their progenitors, and so
on. The discipline of these and other approaches can be very helpful, but trustworthi-
ness demands much more than conventional software. Principled approaches are just
one more step forward, and need to be coupled with sound development practices.

8. Optimistic Optimization

Many people (corporate executives, managers, developers, and so on) tend to ig-
nore the long-term implications of decisions made for short-term gains, often based
on overly optimistic or fallacious assumptions. In principle, much greater bene-
fits can result from far-sighted vision based on realistic assumptions. For example,
serious environmental effects (including global warming, water and air pollution,
pesticide toxicity, and adverse genetic engineering) are largely ignored in pursuit
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of short-term profits. However, conservation and environmental protection appear
much more relevant when considered in the context of long-term costs and benefits.
Furthermore, governments are besieged by intense short-sighted lobbying by special
interests. Insider financial manipulations have serious long-term economic effects.
Research funding has been increasingly focusing on short-term returns, to the detri-
ment of the future.

Computer system development is a particularly frustrating example. Most sys-
tem developers are unable or unwilling to confront life-cycle issues up front and in
the large, although it is clear that up-front investments can yield enormous bene-
fits later in the life cycle. In particular, defining requirements carefully and wisely
at the beginning of a development effort can greatly enhance the entire subsequent
life cycle and reduce its costs. This process should ideally anticipate all essential re-
quirements explicitly, including (for example) security, reliability, scalability, and
relevant application-specific needs such as evolvability, maintainability, usability,
interoperability, and enterprise survivability. Many such requirements are typically
extremely difficult to add once system development is well underway. Furthermore,
certain types of requirements tend to change; thus, system architectures and inter-
faces should be relatively flaw-free and inherently adaptable without introducing
further flaws. Insisting on principled software engineering (such as modular abstrac-
tion, encapsulation, and type safety), sensible use of sound programming languages,
and use of appropriate support tools can significantly reduce the frequency of soft-
ware bugs. All these up-front investments can also reduce the subsequent costs of
debugging, integration, system administration, and long-term evolution—if sensibly
invoked.

Consideration of the value of up-front efforts is a decades-old concept. However,
it is often widely ignored or done badly, for a variety of reasons—such as short-term
profitability, rush to market, lack of commitment to quality, lack of liability concerns,
ability to shift late life-cycle costs to customers, inadequate education, experience
and training, and unwillingness to pursue other than seemingly easy answers.

Overly optimistic development plans that ignore these issues tend to win out over
more realistic plans, but can lead to difficulties later on—for developers, system
users, and even innocent bystanders. The past is littered with systems that did not
work properly and people who did not perform according to the assumptions embed-
ded in the development and operational life cycles. (An example is seen in the mad
rush to low-integrity paperless electronic voting systems with essentially no opera-
tional accountability, discussed in Section 9.) The lessons of past failures are widely
ignored. Instead, we have a caveat emptor culture, with developers and vendors dis-
claiming all warranties and liability.

Many would-be solutions result in part from short-sighted approaches. Firewalls,
virus checkers, and spam filters all have some benefits, but also some problems.
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Firewalls would be more effective if they were not required to pass all sorts of exe-
cutable content, such as ActiveX and JavaScript—but many users want those features
enabled. (To date, viruses and worms have been rather benign, considering the full
potential of really malicious code.) However, active content and malware would be
much less harmful in a well-architected environment that could constrain executable
content in some sort of “sandbox” that has rigidly limited effects.

Spammers seem to adapt very rapidly to whatever defenses they encounter. For
example, they can test their current offerings against existing anti-spam products and
adapt accordingly. Furthermore, domestic legislation may simply drive spammers
offshore, without reducing the pain.

Better incentives are needed for far-sighted optimization, in larger contexts and
over longer periods of time, with realistic assumptions and appropriate architec-
tural flexibility to adapt to changing requirements. Achieving this will require many
changes in research and development agendas, software and system development
cultures, educational programs, laws, economy, commitment, and perhaps most
important—in obtaining well-documented success stories to show the way for others.
Particularly in critical applications, if it is not worth doing sensibly, perhaps it is not
worth doing at all. But as David Parnas has said, let’s not just preach motherhood;
let’s teach people how to be good mothers.

9. An Example: Risks in Electronic Voting Systems

The challenge of ensuring election system integrity provides a paradigmatic ex-
ample of the considerations of the previous sections. The election process is an
end-to-end phenomenon whose trustworthiness typically depends on the integrity
of every step in the process. Unfortunately, each of those steps represents various
potential weak links that can be compromised in many ways, accidentally and inten-
tionally, technologically or otherwise; each step must be safeguarded from the outset
and auditable throughout the entire process.

Irregularities reported in the 2000 and 2004 US national elections span the en-
tire process, concerning voter registration, disenfranchisement and harassment of
legitimate voters, huge delays in certain precincts, unbalanced distribution of vot-
ing equipment, absence of provisional ballots (required by the Help America Vote
Act), mishandling of absentee ballots, and problems in casting and counting ballots
for e-voting as well as other modes of casting and counting votes. Some machines
could not be booted. Some machines lost votes because of programming problems,
or recorded more votes than voters. Some touch-screen machines altered the intended
vote from one candidate to another. The integrity of the voting technologies them-
selves is limited by weak evaluation standards, secret evaluations that are paid for
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by the vendors, all-electronic systems that lack voter-verified audit trails and mean-
ingful recountability, unaudited post-certification software changes, even runtime
system or data alterations, and human error and misuse. (Gambling machines are
held to much higher standards.) Other risks arise from partisan vendors and elec-
tion officials. Furthermore, statistically significant divergences between exit polls
and unaudited results created questions in certain states. All these concerns add to
uncertainties about the integrity of the overall election processes.

With modern technology, the voting process could be more robust. Whether or not
the potential weak links are mostly technological, the process can certainly be made
significantly more trustworthy. Indeed, it seems to be better in many other countries
than in the US; for example, Ireland, India, and the Netherlands seem to be taking
integrity challenges seriously. As technologists, we should be helping to ensure that
is the case—for example, by participating in the standards process or perhaps by
aiding the cause of available source code and publicly accessible evaluations. How-
ever, the end-to-end nature of the problem includes many people whose accidental
or intentional behavior can alter the integrity of the overall process, and thus creates
many nontechnological risks.

With respect to computers used in elections, the principles outlined here would
enable considerable improvements in trustworthiness if they were observed in prac-
tice. For example, architecturally minimizing the parts of the total system that must
be trusted would by itself be a huge improvement, thereby reducing the extent of
the weak links. The same is true of the principle of separating policy and mecha-
nism.

The importance of understanding the idiosyncrasies of mechanisms and human
interfaces, and indeed understanding the entire process, is illustrated by the 2000
Presidential election—with respect to hanging chad, dimpled chad, uncleaned chad
slots, butterfly-ballot layouts, and the human procedures underlying voter registration
and balloting. Clearly, the entire election process has vulnerabilities, including the
technology and the surrounding administration. Looking into the future, a new ed-
ucational problem will arise if preferential balloting becomes more widely adopted,
whereby preferences for competing candidates are prioritized and the votes for the
lowest-vote candidate are iteratively reallocated according to the specified priorities.
This concept has many merits, although it certainly further complicates ballot layouts
and voter awareness!

Alternative approaches have been proposed to existing voting systems (which have
typically been lever machines, optically scanned paper, and paperless unauditable
direct-recording computer systems). In approximate order of increasing concep-
tual complexity, these include (with examples of each) paper-based systems (Ben
Adida [3], David Chaum [10], Ron Rivest [44]), cryptographic solutions (Andy

adcom70 v.2007/02/13 Prn:26/02/2007; 11:21 F:adcom70006.tex; VTEX/ p. 30
aid: 70006 pii: S0065-2458(06)70006-7 docsubty: REV



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 299

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

Neff [31], Josh Benaloh [5]), and voter-verified paper audit trails (VVPATs) (as an
add-on for existing all-electronic systems, as proposed by Rebecca Mercuri [30]).

The VVPAT approach attempts to overcome the lack of integrity in existing direct-
recording systems, but creates further complexity in the process. It is primarily a
short-term fix to the current situation, in which proprietary software and proprietary
evaluations against inherently incomplete voluntary standards provide relatively lit-
tle system integrity. Cryptographic approaches require considerable care in design,
analysis, implementation, and assurance, but also have the potential to avoid paper
records—if the end-to-end systems could be made sufficiently trustworthy. On the

TABLE II
APPLICABILITY OF PRINCIPLES TO ELECTIONS

Principle Computerization Human Procedures

Economy of
mechanism
(+ sound
architecture)

Simplistic mechanisms are
dangerous. Complex systems need
extensive analysis and predictable
composability.

Operational simplicity is essential for
poll workers. Perspicuous risk
assessment is desirable throughout.

Fail-safe
defaults

can simplify operation and improve
trustworthiness.

can mitigate against insider misuse,
fraud, and errors.

Complete mediation can be useful in principled system
architectures.

Weakness in depth requires
end-to-end oversight.

Open design
(+ openness
generally)

Proprietary closed-source software
and evaluations
are inherently suspect.

Diverse oversight is essential
throughout the entire process,
especially over weak links.

Separation of
privileges

can reduce insider misuse, human
error, system failures.

can avoid centralized vested control
throughout.

Least privilege (+
reduced needs for
trust)
(+ constrained
dependency)

eschews root-privilege
misuse, bootload subversion, trusting
untrustworthiness. Avoid software
built on subvertible underpinnings.

is important throughout the entire
process, obviates allocation of
excessive trust. Do not trust
potentially untrustworthy people.

Least common
mechanism

Beware of common flaws
and common fault modes.

Separate roles may
simplify assurance.

Psychological
acceptability

Voter- and official-friendly systems
can be helpful.

Ease of use and operation can help if
it is not simplistic.

Work factors
(+ objective risk
analyses)

must encompass all systems, not just
limited to strength of
cryptography/authentication.

must encompass the entire process
end-to-end, including developers and
operators.

Compromise
recording
(+ pervasive
monitoring)

Tamper-resistant audit trails are
critical whenever results are suspect,
and may help disincentivize fraud.

Manual procedures need oversight
against compromise from
outside/within/below,
not just when suspicions arise.
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other hand, the proposed paper-based systems have considerable conceptual simplic-
ity and avoid many of the integrity problems of computer-based systems. However,
these approaches address primarily only the vote recording and counting parts of the
election process. End-to-end integrity must also include voter registration, voter and
vote authentication, and postprocessing.

Table II tersely summarizes the potential relevance of principles (left column)
for overall system architectures and development, for both computer-related systems
(middle column) and operational procedures (right column) throughout the election
process. The table represents a broadening of the Saltzer–Schroeder principles to ad-
dress some additional aspects (suggested by what follows the plus sign in parentheses
in the principle column). It thus generalizes the original principles somewhat to in-
clude related concepts discussed herein that reach farther than what was originally
covered by Saltzer and Schroeder. It also reflects on the fact that these principles are
relevant to trustworthiness overall—including (for example) many types of human
errors and system failures that are not just limited to security issues. However, it
does not remind the reader that this set of principles is only part of what is needed.
Ultimately, expertise, experience, and good judgment are essential.

10. The Need for Risk Awareness

Around the world, our lives are increasingly dependent on technology. What
should be the responsibilities of technologists regarding technological and nontech-
nological issues?

• Solving real-world problems often requires technological expertise as well as
sufficient understanding of a range of economic, social, political, national, and in-
ternational implications. Although it may be natural to want to decouple technology
from the other issues, such problems typically cannot be solved by technology alone.
They need to be considered in the broader context.

• Although experts in one area may not be qualified to evaluate detailed would-be
solutions in other areas, their own experience may be sufficient to judge the concep-
tual merits of such solutions. For example, demonstrable practical impossibility or
fundamental limitations of the concept, or the existence of serious conflicts of inter-
est of the participants, or an obvious lack of personal and system-wide integrity are
causes for concern.

• Ideally, we need more open, holistic, and interdisciplinary examinations of the
underlying problems and their proposed solutions. (For example, see [37].)

Many concerns arise in important computer-related application areas, such as avi-
ation, health care, defense, homeland security, law enforcement and intelligence—
with similar conclusions. In each area, a relevant challenge is that of developing
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and operating end-to-end trustworthy environments capable of satisfying stringent
requirements for human safety, reliability, system integrity, information security, and
privacy, in which many technological and nontechnological issues must be addressed
throughout the computer systems and operational practices. Overall, technologists
need to provide adequate trustworthiness in our socially important information sys-
tems, by technological and other means. Research and development communities in-
ternationally have much to offer in achieving trustworthy computer-communication
systems. However, they also have the responsibility of being aware of the other im-
plications of the use of these systems.

A deeper knowledge of fundamental principles of computer technology and their
implications will be increasingly essential in the future, for a wide spectrum of indi-
viduals and groups, each with its own particular needs. Our lives are becoming ever
more dependent on understanding computer-related systems and the risks involved.
Although this may sound like a meta-motherhood statement, wise implementation of
motherhood is decidedly nontrivial—especially with regard to risks.

Computer scientists who are active in creating the groundwork for the future need
to better understand system issues in the large, especially the practical limitations of
theoretical approaches. System designers and developers need broader and deeper
knowledge—including those people responsible for the human interfaces used in
inherently riskful operational environments; interface design is often critical. Partic-
ularly in those systems that are not wisely conceived and implemented, operators and
users of the resulting systems also need an understanding of certain fundamentals.
Corporation executives need an understanding of various risks and countermeasures.
In each case, knowledge must increase dramatically over time, to reflect rapid evolu-
tion. Fortunately, the fundamentals do not change as quickly as the widget of the day,
which suggests that pervasive emphasis on education and ongoing training is needed
with respect to the concepts of this chapter.

An alternative view suggests that many technologies can be largely hidden from
view, and that people need not understand (or indeed, might prefer not to know)
the inner workings. For example, David Parnas’s early papers on abstraction, en-
capsulation, and information hiding are important in this regard. Although masking
complexity is certainly possible in theory, in practice we have seen too many occa-
sions (for examples, see the ACM Risks Forum archives) in which the occurrence of
inadequately anticipated exceptions resulted in disasters. The complexities arising in
handling exceptions apply ubiquitously, to defense, medical systems, transportation
systems, personal finance, security, to our dependence on critical infrastructures that
can fail—and to anticipating the effects of such exceptions in design, implementa-
tion, and operation.

Thus, computer-related education is vital for everyone. The meaning of the Latin
word “educere” (to educate) is literally “to lead forth.” However, in general, many
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people do not have an adequate perception of the risks and their potential implica-
tions. When, for example, the information media tell us that air travel is safer than
automobile travel (on a passenger-mile basis, perhaps), the comparison may be less
important than the concept that both could be significantly improved. When we are
told that electronic commerce is secure and reliable, we need to recognize the cases
in which it is not.

With considerable foresight and wisdom, Vint Cerf has repeatedly said that “The
Internet is for Everyone.” The Internet can provide a fertile medium for learning for
anyone who wants to learn, but it also creates serious opportunities for the unchecked
perpetuation of misinformation and counterproductive learning that will need to be
unlearned.

In general, we learn what is most valuable to us from personal experience, not
by being force-fed lowest-common-denominator details. In that spirit, it is impor-
tant that education, training, and practical experiences provide motivations for true
learning. For technologists, education needs to have a pervasive systems orientation
that encompasses concepts of software and system engineering, security, and relia-
bility, as well as stressing the importance of suitable human interfaces. For everyone
else, there needs to be much better appreciation of the sociotechnical and economic
implications—including the risks issues. Above all, a sense of vision of the bigger
picture is perhaps what is most needed.

11. Risks of Misinformation

The problems of online misinformation are evidently worsening, because of the
growth of the Internet and our ever increasing dependence on online systems. In-
formation technology is a double-edged sword—perhaps even more so than many
other technologies. In the hands of enlightened individuals, institutions, and govern-
ments, its use can be enormously beneficial. In other hands, it can be detrimental.
Unfortunately, the dichotomy is often in the eye of the beholder, perhaps depending
on one’s objectives (e.g., personal financial gains, corporate profits, global economic
well-being, politics, privacy, and environmental concerns).

Given a collection of online information, many people behave as if it is inherently
authentic and accurate. This myth applies not only to websites, but also to many types
of special-purpose databases, such as those found in law enforcement, motor vehicle
departments, medicine, insurance, social security, credit information, and homeland
security. We have seen many cases in which misinformation (e.g., false flight data,
erroneous medical records, undeleted acquittals, or tampered files) has resulted in
serious consequences. The same is true of imprecise information (e.g., resulting in
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false arrests, or affecting everyone with a particular name such as “David Nelson”
who attempts to board an airplane).

Although an individual can occasionally observe that personal information about
one’s self is incorrect, more typically such erroneous information is hidden from the
individual in question, possibly in diversely inaccurate versions. Overall, it is usually
impossible for one to ensure that all such instances are correct—especially when
mirrored in unknown sites all over the world. Furthermore, it is difficult to determine
whether or not online information about anything else is authoritative. Worse yet, the
volume of questionable information is growing at an extraordinary rate, and attempts
to update substantive misinformation often have little effect—especially with the
persistence of incorrect cached versions.

We increasingly rely on the Internet for many purposes, including education and
enlightenment, irrespective of whether the sources are accurate. Oft-repeated overly
simplistic sound-bite mantras seem to be popular. Furthermore, some people seem
eager to waste time and energy that could be better spent elsewhere—or to drop
out. There is a tendency for entrenched positions to remain fixed. Are we losing our
ability to listen openly to other views and engage in constructive thought?

Another problem involves the inaccessibility of vital information. We seem to
have evolved into a mentality of “If it is not on the Internet, it does not exist.” Even
though there are many more data bytes available today than ever before, search en-
gines reportedly find only a small percentage of those pages, almost none of the
database-driven dynamic Web pages, and very little of what is in most public li-
braries. Copyright restrictions and proprietary claims further limit what is available.
For example, professional society digital libraries tend to be accessible only to those
members who pay to subscribe. Furthermore, overzealous filtering blocks many
authoritative sources of information. Are our education and information gathering
suffering from a lowest-common-denominator process?

The propagation of misinformation has long been a problem in conventional print
and broadcast media, but represents another problem that is exacerbated by the speed
and bandwidth of the Internet. In general, widely held beliefs in supposedly valid
information tend to take on lives of their own as urban myths; they tend to be trusted
far beyond what is reasonable, even in the presence of well-based demonstrations of
their invalidity.

In the face of such rampant misinformation, the truth can be difficult to accept,
partly because it can be so difficult to ascertain, partly because it can seem so
starkly inconsistent with popular misinformation, and partly because people want
to believe in simple answers. Thus, we are revisiting classical problems that might
now be considered as E-Epistemology, involving the nature and fundamentals of on-
line knowledge—especially with reference to its limits and validity. However, there
are some possible remedies, such as epistemic educational processes that teach us
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how to evaluate information objectively. For websites, this might entail examining
who are the sponsors, what affiliations are implied, where the information comes
from, whether multiple seemingly reinforcing items all stem from the same incorrect
source, whether purported website security and privacy claims are actually justified,
and so on.

12. Boon or Bane?

Predicting the long-term effects of computers is both difficult and easy: it is easy
to predict the future (often mistakenly), but very difficult to be correct. Here are some
suggested possible visions of the future.

• Computers play an increasing role in enabling and mediating communication
between people. They have great potential for improving communication, but there is
a real risk that they will simply overload us, keeping us from really communicating.
We already receive far more information than we can process. A lot of it is noise.
Will computers help us to communicate or will they interfere?

• Computers play an ever-increasing role in our efforts to educate our young. In
some countries, educators want to have computers in every school, or even one on
every desk. Computers can help in certain kinds of learning, but it takes time to
learn the arcane set of conventions that govern their use. Even worse, many children
become so immersed in the cartoon world created by computers that they accept it
as real, losing interest in other things. Will computers really improve our education,
or will children be consumed by them?

• Computers play an ever increasing role in our war-fighting. Most modern
weapon systems depend on computers. Computers also play a central role in military
planning and exercises. Perhaps computers will eventually do the fighting and pro-
tect human beings. We might even hope that wars would be fought with simulators,
not weapons. On the other hand, computers in weapon systems might simply make
us more efficient at killing each other and impoverishing ourselves. Will computers
result in more slaughter or a safer world?

• Information processing can help to create and preserve a healthy environment.
Computers can help to reduce the energy and resources we expend on such things
as transportation and manufacturing, as well as improve the efficiency of buildings
and engines. However, they also use energy, and their production and disposal create
pollution. They seem to inspire increased consumption, creating what some ancient
Chinese philosophers called “artificial desires.” Will computers eventually improve
our environment or make it less healthy?

• By providing us with computational power and good information, computers
have the potential to help us think more effectively. On the other hand, bad informa-
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tion can mislead us, irrelevant information can distract us, and intellectual crutches
can cripple our reasoning ability. We may find it easier to surf the Web than to think.
Will computers ultimately enhance or reduce our ability to make good decisions?

• Throughout history, many people have tried to eliminate artificial and unneeded
distinctions among people. We have begun to learn that everyone has much in
common—men and women of all colors, races, and nationalities. Computers have
the power to make borders irrelevant, to hide surface differences, and to help us over-
come long-standing prejudices. However, they also facilitate the creation of isolated,
antisocial groups that may spread hatred and false information. Will computers ulti-
mately improve our understanding of other peoples or lead to more misunderstanding
and hatred?

• Computers can help us to grow more food, build more houses, invent better
medicines, and satisfy other basic human needs. They can also distract us from our
real needs and make us hunger for more computers and more technology, which we
then produce at the expense of more essential commodities. Will computers ulti-
mately enrich us or leave us poorer?

• Computers can be used in potentially dangerous systems to make them safer.
They can monitor motorists, nuclear plants, and aircraft. They can control medical
devices and machinery. Because they do not fatigue and are usually vigilant, they can
make our world safer. On the other hand, the software that controls these systems
and the people involved may actually be untrustworthy. Bugs are not the exception;
they are the norm. Will computers ultimately make us safer or increase our level of
risk?

Much of the accumulated wisdom summarized in this chapter is not particularly
new. But it is also not widely practiced. Many people are so busy advancing and
applying technology that they do not look either back or forward. We should look
back to recognize what we have learned about computer-related risks (e.g., [34]).
We must look forward to anticipate the future effects of our efforts, including unan-
ticipated combinations of seemingly harmless phenomena. Evidence over the past
decades suggests we are not responding adequately to the challenges. Predilections
for short-term optimization without regard for long-term costs abound. We must
strive to make sure that we maximize the benefits and minimize the harm. Among
other things, we must build stronger and more robust computer systems while re-
maining acutely aware of the risks associated with their use. Perhaps disciplined
observance of the content of this chapter can help provide an impetus for the con-
siderable culture change that is required for the development of trustworthy systems,
networks, and enterprises in the future.
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